Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Lett ; 25(27): 4980-4984, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37338412

RESUMO

Adenosine diphosphate (ADP) ribosylation is an important post-translational modification (PTM) that plays a role in a wide variety of cellular processes. To study the enzymes responsible for the establishment, recognition, and removal of this PTM, stable analogues are invaluable tools. We describe the design and synthesis of a 4-thioribosyl APRr peptide that has been assembled by solid phase synthesis. The key 4-thioribosyl serine building block was obtained in a stereoselective glycosylation reaction using an alkynylbenzoate 4-thioribosyl donor.


Assuntos
ADP-Ribosilação , Adenosina Difosfato Ribose , Adenosina Difosfato Ribose/metabolismo , Processamento de Proteína Pós-Traducional , Peptídeos , Glicosilação , Difosfato de Adenosina
2.
Chembiochem ; 21(20): 2903-2907, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32421893

RESUMO

Stable NAD+ analogues carrying single atom substitutions in either the furanose ring or the nicotinamide part have proven their value as inhibitors for NAD+ -consuming enzymes. To investigate the potential of such compounds to inhibit the adenosine diphosphate ribosyl (ADPr) transferase activity of the Legionella SdeC enzyme, we prepared three NAD+ analogues, namely carbanicotinamide adenosine dinucleotide (c-NAD+ ), thionicotinamide adenosine dinucleotide (S-NAD+ ) and benzamide adenosine dinucleotide (BAD). We optimized the chemical synthesis of thionicotinamide riboside and for the first time used an enzymatic approach to convert all three ribosides into the corresponding NAD+ mimics. We thus expanded the known scope of substrates for the NRK1/NMNAT1 enzyme combination by turning all three modified ribosides into NAD+ analogues in a scalable manner. We then compared the three NAD+ mimics side-by-side in a single assay for enzyme inhibition on Legionella effector enzyme SdeC. The class of SidE enzymes to which SdeC belongs was recently identified to be important in bacterial virulence, and we found SdeC to be inhibited by S-NAD+ and BAD with IC50 values of 28 and 39 µM, respectively.


Assuntos
Legionella pneumophila/enzimologia , NAD/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Modelos Moleculares , Conformação Molecular , NAD/síntese química , NAD/química , Inibidores de Poli(ADP-Ribose) Polimerases/síntese química , Inibidores de Poli(ADP-Ribose) Polimerases/química
3.
Chemistry ; 25(29): 7149-7157, 2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-30882938

RESUMO

The 3D shape of glycosyl oxocarbenium ions determines their stability and reactivity and the stereochemical course of SN 1 reactions taking place on these reactive intermediates is dictated by the conformation of these species. The nature and configuration of functional groups on the carbohydrate ring affect the stability of glycosyl oxocarbenium ions and control the overall shape of the cations. We herein map the stereoelectronic substituent effects of the C2-azide, C2-fluoride and C4-carboxylic acid ester on the stability and reactivity of the complete suite of diastereoisomeric furanoses by using a combined computational and experimental approach. Surprisingly, all furanosyl donors studied react in a highly stereoselective manner to provide the 1,2-cis products, except for the reactions in the xylose series. The 1,2-cis selectivity for the ribo-, arabino- and lyxo-configured furanosides can be traced back to the lowest-energy 3 E or E3 conformers of the intermediate oxocarbenium ions. The lack of selectivity for the xylosyl donors is related to the occurrence of oxocarbenium ions adopting other conformations.

4.
J Org Chem ; 84(3): 1218-1227, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30605336

RESUMO

Thiosugars, sugars that have their endocyclic oxygen substituted for a sulfur atom, have been used as stable bioisosteres of naturally occurring glycans because the thiosugar glycosydic linkage is supposed to be stabilized toward chemical and enzymatic hydrolysis. We have performed an in-depth investigation into the stability and reactivity of furanosyl thiacarbenium ions, by assessing all four diastereoisomeric thiofuranosides experimentally and computationally. We show that all furanosyl thiacarbenium ions react in a 1,2- cis-selective manner with triethylsilane, reminiscent of their oxo counterparts. The computed conformational space occupied by the thiacarbenium ions is strikingly similar to that of the corresponding furanosyl oxycarbenium ions, indicating that the stereoelectronic substituent effects governing the stability of furanosyl oxocarbenium ions and thiacarbenium ions are very similar. While the thio- ribo-furanose appears to be less reactive than its oxo counterpart, the thio- ara-, lyxo-, and xylo-furanosides appear to be more reactive than their oxygen equivalents. These differences are accounted for using the conformational preference of the donors and the carbocation intermediates. The lower reactivity of the thio- ribo furanosides in (Lewis) acid-mediated reactions and the similarity of the thia- and oxocarbenium ions make thio- ribo-furanosides excellent stabilized analogues of the naturally occurring ribo-furanose sugars.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...